Evaluation of Differentiated Services using an Implementation under Linux

Roland Bless, Klaus Wehrle
Institute of Telematics, Universitit Karlsruhe (TH)
Zirkel 2, 76128 Karlsruhe, F.R. of Germany
{bless,wehrle } @telematik.informatik.uni-karlsruhe.de

Abstract. Current efforts to provide distinct levels of
quality-of-service in the Internet are concentrated on the Dif-
ferentiated Services (DS) approach. In order to investigate
the gain for users of those differentiated services, early ex-
periences with implementations with respect to real applica-
tions are needed. Simulation models are often not sufficient
if a judgement of the behavior under realistic traffic scenar-
ios is desired. Because implementing new functionality into
dedicated router hardware is difficult and time-consuming,
we focused on a software implementation for standard PC
hardware.

In this paper we present an implementation of Differen-
tiated Services functions for a PC-based router running un-
der the Linux operating system. Two per-hop forwarding
behaviors for Assured Service and Premium Service were re-
alized. Components for traffic conditioning such as traffic
meter, token bucket, leaky bucket and traffic shaper were
implemented as well as an efficient traffic classificator and
queueing disciplines. We describe the design and implemen-
tation issues of these components, which were validated in
detail by measurements. Evaluation of these measurements
shows that the proposed forwarding behaviors work well for
boundary and interior routers. But, it also becomes appar-
ent that standard applications using short-lived TCP connec-
tions cannot always exploit the requested service completely
whereas rate-controlled sending applications are able to take
full advantage of it. Furthermore, it is planned to release the
implementation to the public for research purposes.

1 Introduction

There is an increasing demand for different services other
than the traditional best-effort delivery in the Internet. In
order to meet the highly varying requirements of users and
forthcoming applications, Internet service providers (ISPs)
want to offer alternative levels of service to their customers.
Additionally, competition between service providers is forced
by providing various services at different pricing.

But, the actual benefit to users of Differentiated Services
is not known a priori. Thus, early experiences with such new
services are required. Most simulation scenarios don’t have
real application data as input, especially those of interactive
applications. An implementation of new functionality for
supplying Differentiated Services within ‘real’ routers, i.e.,
specialized hardware dedicated to routing functions, is of-
ten not possible, because development is in the hands of the

hardware manufacturer. Therefore, we used a standard per-
sonal computer (PC) as a router to implement and evaluate
new functionality. The router consists of a standard PC with
a single CPU and several network adapters connected by the
usual PCI or ISA bus. Naturally, this architecture has some
performance limitations, but on the other hand it is very
flexible, because routing functionality is completely done in
software. Consequently, new mechanisms can be employed,
tested and modified very fast. It can serve to build a first
platform for testing new services in small testbeds using real
applications.

2 Differentiated Services

After specification of an Integrated Services architecture for
the Internet [FeHuYR]|, some doubts about its scalability
arose, because per flow state information has to be kept in
every router on the path from sender to receiver(s). It is ar-
gued that identification of every single flow and management
of very much state information would decrease performance
dramatically, especially if considering heavily loaded routers
in the core network of today’s Internet. Thus, a new Inter-
net working group was founded with the goal to develop a
scalable architecture for supporting differentiated services in
the Internet. Currently, there is much work in progress and
the working group specified some draft documents of which
scribing a basic architecture for Differentiated Services (DS).

Scalability is achieved by reducing complexity and state
information in routers. This is mainly attained by aggrega-
tion of traffic classification state. Packets are classified and
marked for a corresponding service category. Complex traf-
fic conditioning functions such as classification, policing and
shaping are only required at network boundaries or hosts.
Consequently, nodes in the inner network only need to dis-
tinguish between different per-hop forwarding behaviors by
looking at a mark in the packet header, and they need to pro-
vide accordant forwarding mechanisms. This mark is consti-
tuted by a part of the DS field (which replaces the IPv4 TOS
octet or IPv6 Traffic Class octet), which is the so-called Dif-
ferentiated Services codepoint (DSCP) [RBBNYR]. A code-
point value corresponds to a particular per-hop forwarding
behavior (PHB) in a DS domain, which is a contiguous set of
nodes that support Differentiated Services as defined in the
DS architecture [BBCDTAR]. Hence, end-to-end services can
be constructed by a sequence of (possibly identical) per-hop

mailto:bless@telematik.informatik.uni-karlsruhe.de
file:wehrle@telematik.informatik.uni-karlsruhe.de

forwarding behaviors supplied by all DS domains that lie on
the corresponding path.

A DS domain comprises boundary nodes that connect to
other DS domains or non-DS domains and interior nodes
which connect only boundary nodes or other interior nodes
within this domain. Boundary nodes are ingress and egress
points for traffic, and, consequently perform more complex
traffic conditioning functions such as policing or shaping. In-
terior nodes only distinguish between different behavior ag-
gregates which denote a collection of packets with the same
DSCP crossing a link in a particular direction. Thus, there
is no need to maintain state information per ‘microflow’ in
interior nodes. In this context a microflow denotes a sin-
gle instance of an application-to-application flow of packets
which is identified by source address, source port, destination
address, destination port and protocol id.

Our first implementation is mainly based on services
(and their corresponding per-hop-behaviors) that were pro-
posed in [TaNZ97]. Thus, we also distinguish between first-
hop routers, border routers and interior routers. First-hop
routers typically police incoming traffic from non-DS-aware
end-systems and mark packets in accordance to a negoti-
ated traffic profile. In addition, first-hop routers will often
perform traffic shaping functions. Border routers typically
connect different DS domains (often under administration of
different ISPs) to each other, so they also perform policing
for incoming traffic from other domains, but in their case,
only aggregates are considered. Thus, classification is much
simpler and mainly based on input link interface and DS
codepoint. Border routers will also often shape outgoing
traffic to enforce conformance to negotiated service level and
traffic conditioning agreements with other service providers
of DS domains. First-hop router and border router are both
denoted as DS boundary nodes in the sense of the DS ar-
chitecture [BBCDT9I]]. Consequently, interior routers are
denoted as interior nodes in the same context.

The Premium Service (PS) described in [JIaNZ97] and its
corresponding Expedited Forwarding PHB in [JaNPY9] re-
spectively, provides a guaranteed bandwidth, low delay and
low loss service that shows the same characteristics as a ‘vir-
tual leased line’. This is achieved by keeping PS queues very
small or almost empty, which in turn can only be accom-
plished by guaranteeing that the maximum arrival rate of an
aggregate is less than that aggregate’s minimum departure
rate. Thus, admission control and policing is needed with
respect to the guaranteed rate as a required configuration
parameter.

Assured Service (AS) as proposed in [ITaNZ97] permits a
statistical guaranteed rate only. It permits to use additional
available capacity while providing a base rate. Packets that
exceed the negotiated rate are either marked as best-effort
traffic or dropped. The overall dropping probability of AS
packets is considerably lower than for best-effort packets.
Thus, Assured Service allows some amount of bursts that are
also forwarded and even aggregated as bursts. Consequently,
the firmness of its guarantee depends on how well links are
provisioned for bursts, because packets that are marked as

best-effort may be later dropped if congestion occurs. Fur-
thermore, implementations of AS must assure that packets of
microflows are not reordered. Moreover, delay characteristics
would not be better than that of normal best-effort traffic.
The current proposal for an Assured Forwarding PHB group
[BHEWWUYI| comprises the Assured Service as a special case
and offers more degrees of freedom.

3 Implementation under Linux

A good basis for implementing a router with DS function-
ality is the Linux operating system. It runs on standard
PC hardware and source code of the kernel is widely avail-
able. Additionally, since development kernel version 2.1 it
supports a variety of queueing disciplines for output queues
of network devices. Moreover, all functions for routing are
already provided.

To get a deeper insight into our concrete realization of Dif-
ferentiated Services mechanisms, understanding how Linux
handles basic network functions is important. Hence, a short
overview of the standard Linux network implementation is
given next. Afterwards, the implementation of Assured Ser-
vice and Premium Service is presented.

3.1 Network implementation

To give a short overview of the Linux IP network imple-
mentation, the course of an IP-packet through the system is
described first (cf. figure).

Higher layers
4

ip_local_deliver() Routing

ip_send()
A H
1

Layer 3

i

1
v v
ip_forward() — ip_queue_xmit()

1 v
dev_queue_xmit()

——|Output
—1Queue

hard_stalxrt_xmit()

Layer 2| backlog |—

-

interrupt‘netif_rx()

|
Network Interface Card

\
Layer 1 Network Interface Card

Figure 1 The course of a packet through the system

After a packet is received by a network interface card, a
hardware interrupt is triggered. As a consequence, an in-
terrupt handling routine (ei_interrupt()) is invoked and
determines the type of interrupt. For interrupts caused
by incoming packets a further handling routine is called
(ei_receive()) which simply copies the packet from the net-
work card into an internal socket buffer structure (sk_buff)
and calls a procedure named netif _rx (). The latter queues
the packet (represented by a socket buffer structure) into a
central queue (backlog) consisting of all packets that arrived
on any network adapter of the system. The first time-critical
part of the interrupt routine, called ‘top-half’, is finished at
this time.

The necessary second part, called ‘bottom-half’, is handled
by the network bottom-half routine (NET_BH) which is regu-

larly invoked by the kernel scheduler. At first, this procedure
checks whether there are still packets waiting for transmis-
sion in an output queue of any network adapter. If there are
any packets waiting they are processed for a limited period.
Subsequently, NET BH proceeds with the next packet from
the backlog queue and determines the appropriate protocol
to handle the packet which is in our case the Internet Pro-
tocol IP. ip_rcv() checks for correctness of the IP header
and then processes any existing options. It also reassem-
bles the original IP packet from fragments if necessary and
if the packet has reached its final destination. In the latter
case, the packet is delivered locally, otherwise it is routed
and forwarded towards its destination. ip_forward() tries
to find the right network adapter this packet is forwarded
to next by use of a routing table. If there is a valid en-
try in the routing table ip_queue_xmit () is subsequently in-
voked, performing some final operations such as decrement-
ing time-to-live values and recalculating IP header check-
sums. dev_queue xmit() queues the packet into the output
queue of the corresponding network device. At this point a
special queueing discipline can be invoked. One can imagine
that the output queue is probably realized by some sophisti-
cated queueing discipline that manages several virtual queues
in order to treat packets in different ways (cf. fig. f). Thus,
each queueing discipline constitutes one output queue for a
device that is not necessarily served in FIFO order. Within a
queueing discipline, transfer of a packet onto network media
is initiated by calling hard_start_xmit (), which instructs
the network device to send the packet.

Queueing

Discipline

Internet Queueing
Protocol "| Discipline

l Queueing

Discipline|:

r=> I)

1
—»lenqueue] [dequeuel—>
~->}---+

Figure 2 Routing with different queuing disciplines

The Linux kernel already contains various queueing disci-
plines such as Class Based Queueing, Weighted Fair Queue-
ing or Random Early Detection. We found that the existing
RED implementation contained some errors and was not pre-
cise enough for our purposes. Thus, implementation of the
RIO algorithm was done from scratch.

The problem to put configuration data (e.g., traffic pro-
files) for Differentiated Services into the kernel memory eas-
ily was solved by using device drivers. Naturally, there is
no real physical device that is controlled by those drivers,
but the new DS functions are driven by them. Thus, one
can configure new parameters for services by simply writing
data structures into the corresponding device. Otherwise,
new kernel system calls had to be introduced leading to more
complexity. Furthermore, some status data of the modules is

DS Classifier Module

- Hash- [L
| Classifier | Table
A
|
Profile-List |
]
ul
DS Queueing Discipline Module
orem: — PS-Queue
remium
Service| cay =j_
Bucket
Y
1, Classifii_g ¥ |Scheduler |—->
cation Best-Effort ... - A
Assu.red Token RIO-Queue
EEIIEE Bucket >
v >—

Figure 3 Implementation architecture

supplied by files in the /proc filesystem and can be obtained
by simply reading these files.

Another design decision was to use kernel modules for im-
plementation of DS functionality. Kernel modules need not
to be present all the time in the kernel, so that the kernel can
run without them if they are not actually used. Particularly,
instead of recompiling the whole kernel and restarting the
system everytime a part of the module’s code was changed,
one can simply reload the newly coded module. This short-
ens development time dramatically.

The implementation comprises two kernel modules (see fig-
ure fJ): a Differentiated Services Classifier (DSC) module and
a Differentiated Services Queueing Discipline (DSQD) mod-
ule. The DSC module classifies packets based on a value
of a combination of one or more header fields (Multi-Field
Classifier) and assigns the corresponding profiles to those
packets. In addition, for border routers classification can be
restricted to evaluation of a combination of input port and
DS codepoint. The DSQD module includes the following
components for traffic conditioning: a traffic meter realized
by a token bucket and a leaky bucket, a marker, a traffic
shaper and a dropper. Moreover, queueing disciplines and
scheduling mechanisms for both forwarding behaviors are lo-
cated in this module. In the following, realization of both
modules is described more detailed.

3.2 Differentiated Services Classifier Module

This module is responsible to classify any incoming packets
in first-hop-routers or border routers and to find the corre-
sponding traffic profiles for them. Multi-field classification
is used in first-hop-routers and is restricted in the current
implementation to a combination of the fields source end-
system address, source port number, destination end-system
address, destination port number and protocol id. Which

combination of header fields is to be considered significant for
comparison is determined by a flag field, thus giving flexibil-
ity to identify all flows to a certain destination port (e.g., port
80 for WWW-traffic) or even individual microflows. Clas-
sification in border routers is done on identification of the
incoming network link and DS codepoint in order to allow
traffic policing according to existing service level contracts
with other providers.

struct profilet {
unsigned int id;
unsigned long timeout;
struct ds_addr_t addr;
unsigned char type;
union {

struct as_data_t as;

struct ps_data_t ps;
} service;

} }

struct ds.addr.t {
unsigned char flags;
struct in_addr s_addr;
struct in_addr d_addr;
unsigned short s_port;
unsigned short d_port;
unsigned char protocol;

(a) profile data structure (b) classifier data

structure

Figure 4 An internal DS profile structure

Profile data (see fig. fl{a]) comprises information about
traffic parameters (e.g., token rate and token bucket size)
for a specific service (in the union service). In our imple-
mentation, classification information is also stored within the
corresponding profile (member addr). Profiles are identified
by a unique identification number (member id) and also con-
tain the type of service they belong to (member type). All
profiles for Premium and Assured services are organized in
a linked list. For packets belonging to the traditional best-
effort service no profile data is needed.

An efficient implementation of this classificator is crucial
for the performance of the whole system, because every in-
coming packet has to be classified except in interior routers.
Therefore, profiles are stored in the kernel memory to shorten
access time, but because kernel memory cannot be paged out,
data structures have to be compact. A hash table is used to
find a profile related to an incoming packet. If there is no
entry in the hash table for a packet, the list of active pro-
files is searched. On an unsuccessful search the packet only
gets best-effort forwarding as default behavior. In any case
a new hash entry is created either containing a reference to
the profile or a null pointer indicating best-effort traffic. This
guarantees that best-effort traffic is not treated disadvanta-
geously. In order to reduce memory usage every entry in the
hash table expires if no packets related to it were received
within a certain period, which is configurable by setting a
value in the variable timeout of the profile_t structure.

A reference to the profile is stored in the sk_buff structure,
because it must be available before a packet is queued and
if a packet is removed from the queue. A reference for best-
effort packets is constituted by a null pointer.

3.3 Differentiated Services
Module

Queueing Discipline

The queueing discipline module contains the main functions
for traffic conditioning and forwarding (cf. figure f) for As-
sured Service, Premium Service and traditional best-effort
service. Incoming traffic is classified either by the DSC mod-
ule (in boundary routers) or simply by the DS codepoint (in
interior routers). If we look at boundary routers, incoming
traffic is checked against traffic profiles by a token bucket
for AS flows and by a leaky bucket for PS flows. In interior
routers traffic is directly put into one of both queues without
policing. Non-conforming PS packets are dropped, whereas
non-conforming AS packets are marked as out-of-profile (in
our implementation as best-effort). The PS queueing disci-
pline is a simple FIFO (first-in-first-out) strategy, whereas
the AS queue is served according to a RIO algorithm (Ran-
dom Early Detection with distinction of in-profile and out-
of-profile packets) [FLIag3, TaN7Z97]. The RED algorithm is
used for in-profile and out-of-profile packets with different
parameter values, resulting in different drop probabilities.
The parameter values for out-of-profile packets are also ap-
plied to best-effort traffic. A simple priority scheduler is used
between PS queue and AS queue, servicing all packets wait-
ing in the PS queue before any packet from the AS queue.
Additionally, traffic from the PS queue is shaped in first-hop
or border routers.

Implementation of token bucket, RIO queueing discipline,
leaky bucket and traffic shaper is now discussed in depth by
looking at implementation of Assured Service and Premium
Service.

3.3.1 Assured Service Implementation

To test conformance of observed AS traffic with its specifica-
tion in the traffic conditioning agreement, a token bucket is
used [FeHu9R|. A token bucket can describe characteristics
of a traffic source, which is allowed to emit bursts of pack-
ets to some extent. A token bucket is filled with tokens at a
constant rate and has a fixed size for holding these tokens, so
the bucket cannot contain more tokens than specified by this
size. Every time a packet arrives, it consumes a correspond-
ing number of tokens. If there are enough tokens available
in the bucket, the packet is allowed to pass by and the con-
tent of the bucket is reduced by the number of used tokens.
Otherwise the packet is considered to be non-compliant with
the traffic profile and can be discarded or marked accord-
ingly. The service-specific traffic profile data is depicted in
figure p(a)]. The first two parameters specify token rate (in
bits per second) and token bucket size (in bytes) accordingly.

We decided to use a byte-oriented token bucket (one to-
ken corresponds to one byte) to achieve a high accuracy and
common base for policing. Considering only IP packets as
units is not precise enough, because their length can vary,
consequently yielding varying throughput (measured in bits
or bytes per second) even at constant packet rates.

Some limitations of the hardware must be considered be-
fore implementing a byte-oriented token bucket. The internal

struct ps.data_t {
ulong rate;

ulong bucket_size;
ulong pqg-bytes;

ulong packets;

ulong packets_enq;
ulong packets_deq;
ulong packets_dropped;
ulong cycles_per_byte; ulong cycles_per_byte;
CPU_STAMP 1last_arvl; CPU_STAMP next_kick;

b b

struct as_datat {
ulong rate;

ulong bucket_size;
ulong bucket;
ulong packets;

(a) AS profile structure (b) PS profile structure

Figure 5 Internal AS and PS specific profile structures

system clock is incremented every 10 ms by a timer interrupt,
and, for that reason not accurate enough in order to mea-
sure time between arrival of two consecutive packets even
at ‘slow’ speeds of a 10 Mbit/s Ethernet (within 10 ms more
than 8 packets can arrive if sent at full rate). The solution
is to use a special processor register provided by most mod-
ern CPUs that is incremented with every processor cycle for
improvement of the system’s clock precision. For example
a processor running at 200 MHz gives a resolution of 5ns.
But the achievable accuracy is reduced, because generating
a timestamp typically consumes more than 1 cycle (in our
case 10 cycles) due to storing the register contents into main
memory which is not clocked at the same rate as the CPU.

The token bucket is realized as follows: the packet ar-
rival time is taken immediately when it is queued into the
backlog by the interrupt handling routine netif rx. The
amount of tokens that were filled into the bucket within the
period between arrival of the previous and this packet is cal-
culated by building the difference between arrival time of the
last packet belonging to this profile (last_arvl) and arrival
time of this packet multiplied by the token rate ((netif_rx
- last_arvl)/cycles_per_byte with cycles_per_byte:=
8-cpu_clock/rate). If addition of this amount to the cur-
rent content (bucket) lets the bucket overflow, the content
is set to bucket_size. In case the bucket holds enough to-
kens corresponding to actual packet size, the bucket content
is reduced by this amount and the packet is passed as in-
profile. Otherwise the packet is marked as out-of-profile. In
any case, last_arvl is updated.

All packets belonging to Assured Service (in-profile as well
as out-of-profile packets) and best-effort service are queued
into one RIO-queue. Because the RED algorithm calculates
the drop probability in dependence on average queue length
ave, this value has to be calculated and updated. A new
packet is dropped with increasing probability (up to pmax)
if @avg is between lower threshold g¢min and upper threshold
Qmax- Below qmin the packet is never dropped and above
(max 1t is always dropped. The RIO algorithm simply keeps
track of separate queue lengths for in-profile (only in-profile

packets are considered) and out-of-profile packets (in-profile,
out-of-profile and best-effort packets are considered) as well
as different thresholds ¢umin, ¢max and drop probabilities pyax.
In order to avoid floating point arithmetic, some simplifi-
cations are used. ¢ayvg is periodically updated by gave :=
Gave + Wq * (our — Gavg) With current queue length gc., and
weight w,. Instead of multiplying with w, we divide by the
integer 1_Wq which is set to |1/wg]. If gavge is updated only at
times when a packet arrives one has to take the period into
account during which no packet arrived. In order to avoid
complexity introduced by this extra calculation such as pre-
sented in [ETJa93], we simply update g.vs periodically (256
times a second) by using a timer interrupt. Similarly, check-
ing for the condition random - 1_Pmax < @avg — Gmin requires
only integer arithmetic (without division) to decide whether
the current packet has to be dropped if ¢min < Gavg < ¢max
holds. random is a pseudo-random integer value between 0
and ¢max — Jmin, and, 1 Pmax is set to |1/pmax|. Packets
remain in the RIO-queue until they are removed for trans-
mission by the NET_BH routine that is regularly called by the
kernel scheduler.

3.3.2 Premium Service Implementation

First of all, packets belonging to PS flows are checked for
conformance according to their related profile (except in in-
terior routers). This is accomplished by using a byte-oriented
leaky bucket [FeHu9R| that also shapes outgoing traffic. At
arrival of a packet a check is performed whether it still ‘fits’
into the bucket. This can be accomplished by evaluating
the condition packetlen + pg-bytes < bucket_size, with
packetlen denoting the length of the current packet in bytes,
pa-bytes representing the current amount of bytes held in
the leaky bucket, and, bucket_size an upper bound for its
contents (the latter two are contained in the PS profile struc-
ture that is depicted in fig. B(b]). In case there is not enough
space left, the packet is discarded. Otherwise transmission
of the packet is delayed if necessary (traffic shaping is ap-
plied). The earliest instant for transmission of this packet
is stored in the variable next kick. As described above, ar-
rival time of packets is recorded in the variable netif rx
of the sk_buff structure. If the packet arrived too early
(netif _rx < next kick) its theoretical instant of transmis-
sion is stored into the variable ps_stamp of the sk_buff struc-
ture and it is queued into the PS queue. Packets in this
queue are sorted by their theoretical moment of transmis-
sion (ps_stamp), so new packets are simply inserted from the
end of the queue until they fulfill this sorting condition. In
case a packet arrived too ‘late’ (netif_rx > next kick) it is
immediately scheduled for transmission by setting ps_stamp
to netif rx. In order to avoid exceeding the agreed rate
contained in the profile (the first variable rate [bits per
second] of the PS profile structure), transmission of the
next packet belonging to this profile is not allowed until
the time is elapsed that would be necessary if the current
packet will be transmitted at speed rate. Thus, conform-

ing transmission of the next packet can be started earliest at
next_kick := ps_stamp + packetlen - cycles_per_byte.
Transmission of packets in this queue is initiated by a
timer interrupt, because they have to be sent at the right
time ps_stamp for generating shaped traffic, and, transmis-
sion initiated by NET_BH occurs too indeterministically. The
available default resolution of this system timer (100 Hz on
standard PCs, 1024 Hz on workstations with an Alpha CPU)
is not accurate enough for traffic shaping. But one can in-
crease this frequency up to 8192Hz. We use a value of
4096 Hz to achieve a resolution of 244 us. Although the
number of timer interrupts per second is now much higher
than before, a degradation of system performance could
not be observed at our systems. If a timer interrupt calls
premium_send (), ps_stamp of the first packet in the queue is
checked. Transmission of the packet is started immediately
by calling hard_start_xmit if the instant is reached or al-
ready passed. In case the network adapter is currently busy
transmitting another packet, hard start_xmit is called until
forwarding is possible. If there are further packets in the PS
queue with an elapsed ps_stamp, they are also transmitted.

4 Evaluation

In order to evaluate effective gain for users of Differentiated
Services we accomplished some tests. A first series of tests
had the objective to validate our implementation of traffic
conditioning and forwarding mechanisms. Subsequently, a
second series of tests focused examination of characteristics
of both services.

4.1 Test configuration

We used the following configuration that is shown in figure B.
The testbed comprises a PC as DS router (Pentium CPU at
200 MHz, 64 MB Ram, 3 network cards 3Com 3c509 Ether-
link IIT) two PCs as sender (end-systems A and B both Pen-
tium CPU at 90 MHz) and one PC as receiver (end-system
C, Pentium CPU at 133 MHz). The network was completely
build of separate 10Base2 Ethernet segments, because we
currently had no 10BaseT network cards available for this
testbed. Using 10Base2 simplex Ethernet instead of duplex
10BaseT also induced a problem for tests using TCP: be-
cause acknowledgements have to be sent back to the sender,
collisions would occur and disturb our measurements. Thus,
we used a separate 10BaseT network (dashed line in fig. f)
for all traffic that is sent back from C to A, especially TCP
acknowledgements.

I/O performance and CPU power of the router are crucial
for a successful operation, because if the PC is too slow, pro-
tocol processing for a packet is never finished before a new
packet arrives. As a consequence, the backlog is filled up
to its maximum and all queued packets are discarded until
the backlog is empty again. Thus, implemented mechanisms
such as the RIO algorithm are never used in this case, be-
cause packets are dropped already earlier. Nevertheless, a

End-system A
Pentium @ 90MHz
Linux 2.0.33

Yy

Ethernet
10Base2

90 u Router
Pentium @ 200MHz End-system C
f— Linux 2.1.101 Pentium @ 133 MHz

| Ethemet Linux 2.0.33
10Base2
End-system B

Pentium @ 90 MHz
Linux 2.0.33

Figure 6 Configuration of the test network

PC with a Pentium CPU running at 200 MHz is sufficient to
route incoming traffic of 20 Mbit/s at least.

Sender A and B generate accurate shaped UDP traffic
flows for a certain period. All packets have a constant UDP
payload length of 1000 bytes. Every packet gets a timestamp
that contains its correct instant for transmission. To achieve
high accuracy, the processor cycle counter register (PCC reg-
ister) is used for all timing purposes. Packets for distinct
flows are queued for transmission into a sending queue. An
endless loop checks whether the instant of the first packet
in this queue has already passed (causing immediate trans-
mission of this packet) or whether the specified execution
period of this test has already expired. Before a packet is
sent, a timestamp containing the current time is put into the
UDP payload of the packet. The router also writes times-
tamps of certain instants into transmitted packets (only for
packets with a specific port number): when a packet is re-
ceived (netif _rx), when it is dequeued from the backlog
(net_bh), when it enters the DS queueing discipline before
classification (before_dsc), after classification (after_dsc),
before packets are enqueued into the PS queue or RIO queue
(dsqd_enqueue_ps,dsqd_enqueue_rio) and when they are
dequeued (dsqd_dequeue_ps, dsqd_dequeue_rio). Addition-
ally, for Premium Service packets the aforementioned theo-
retical packet send-off time ps_stamp is recorded as well as
the instant dsqd_premium_sent when a packet is actually
delivered to the network adapter. In order to influence the
router as little as possible, recording of those timestamps is
done at the receiver. Otherwise, accesses to the file system
would disturb our measurements.

The receiver C also records the arrival time of a packet,
again using its PCC register. All timestamps included in
the packet are extracted at the receiver and dumped into a
file, that can be evaluated later with a standard spreadsheet
program.

All tests were executed for a fixed duration: tests with
UDP packets took 10s whereas tests with TCP lasted 100s.
Furthermore, we used fixed packet sizes in every experiment.

4.2 Tests and Results

We did all tests, if applicable, for every type of router: first-
hop router, border router and interior router. Thus, we can
conclude how services are provided end-to-end. First of all,
token bucket, leaky bucket and the traffic shaper were vali-
dated by tests.

Number of Packets
1900

bucket = 2100 bucket = 4200 bucket = 8400 bucket = 10420

1800 1

1700 A
172 176 173 155

1600 - —

1500 - — — — —

62 71 57 o1

327 320 319
1400 A
55 56 | 57
18 L1179 2 | |168 178

23

1300 A 75 ==l 72 == 65
o |46 o |40 o o |3

142

&=
=
8

24g1257/12! 1257 F..".. 5912591259 1 4412631263126 11262 4126512651265 1265

‘ = = 1 =
0% 0% 40% 0% 10% 40% 0% 0% 40% 0% 10% 40%
Excess of Rate

1200

O Dropped Out-of-Profile Packets
O Out-of-Profile Packets (forwarded as best-effort)
@ In-Profile Packets

Figure 7 Results for validation of token bucket behavior

The token bucket should determine which packets of an
Assured Service flow are conforming and which are not.
For this test sender A sent 1 Mbit/s Assured Service traffic,
1 Mbit/s Premium Service traffic and 5Mbit/s Best-Effort
traffic to Receiver C. Sender B simply sent 1Mbit/s Pre-
mium Service and 5Mbit/s best-effort traffic to C. The ac-
tual sent rate for Assured Service was varied to excess the
allowed rate in the profile about 0%, 5%, 10%, 20% and
40%. FEach test was repeated with different bucket sizes.
The result is shown in figure [] (note that the Y-axis starts
at 1200): the part of in-profile packets is colored dark-gray,
the part of out-of-profile packets gray and the portion of
dropped packets white. In every case the rate of in-profile
packets was strictly bounded independent of bucket size or
rate excess. Flows that exceeded their profile rate trans-
mitted a fixed amount of additional packets, because they
exploited their allowed portion of bursty traffic. 60%-70%
of all out-of-profile packets still gets through to the receiver.
This portion depends heavily on the current traffic situa-
tion in the router. The probability that an out-of-profile
packet is not dropped on a specific interface of a route can
be estimated by (¢ — Aps — Am)/(Aout + Apr) with p denot-
ing the total available netto transmission rate of the physical
medium and Ax denoting the rate of service X (PS=Premium
Service, BE=Best-Effort, In=Assured Service In-Profile traf-
fic, Out=Assured Service Out-Profile traffic) loaded on this
interface. Additional actions must be provided to prevent
unfairness caused by intentional excess of the contracted AS
rate.

The same tests were applied to the leaky bucket that is
used as a meter for Premium Service. Consequently, sender
A and B sended each 1Mbit/s Assured Service traffic and
5 Mbit /s best-effort traffic. In addition, Sender A transmit-
ted 1 Mbit/s Premium Service traffic which was subsequently
increased about 5%, 10%, 20% and 40%. The test results
confirmed the effective restriction to the allowed rate for Pre-
mium Service traffic of 1 Mbit/s.

The next presented series of measurements is based on
the following configuration: End-system A sends 5Mbit/s
best-effort traffic and 10 Premium Service flows (5-100 kbit/s,
4-25kbit/s, 1-400kbit/s). Sender B also sended 5Mbit/s
best-effort traffic, 6 Premium Service flows (5-100kbit/s and
1-500 kbit/s).

Interpacket time [us]
18000

16000
14000
12000
10000
8000
6000
4000
2000

0 10 20 30 40 50 60 70 80 90 100 110
Packets

I Time between packets after leaving the traffic shaper
Time between packets at arrival in the router

Figure 8 Validation of the traffic shaper

Figure § shows interpacket times (i.e., the time distance
between two consecutive packets passing the same measure-
ment point) of incoming PS traffic at the router (times-
tamp netif _rx) and of received traffic at end-system C. The
traffic is shaped to an aggregated output rate of 2Mbit/s
for Premium Service. The observed rate-jitter (variation in
interpacket time) has two sources. First, if a packet has
reached its theoretical time for transmission (ps_stamp) the
network adapter can still be busy with transmission of pre-
vious frames. Because some network cards provide a trans-
mission buffer for caching several frames, we reduced the size
of this buffer to two packets, so only one frame can be cur-
rently in transmission if a new frame is stored into the buffer
for transmission. Thus, the interpacket time can vary by
one packetizing time (i.e., the time a packet needs to be put
completely onto the physical medium). A second source for
extra delay is inaccuracy of the timer. Although its resolu-
tion was increased to 244 us we get an additional inexactness
of this resolution in the worst case, because within this pe-
riod transmission of a new frame from other service classes
could have been just initiated. Furthermore, if packets have
varying length (which is the usual case) the jitter would be
increased. Finally, the two peaks at packets 22 and 102 are
caused by senders which do not fully exploit their negotiated
traffic rate at these instances.

4.2.1 Evaluation of Assured Service

Although the Assured Service offers only statistical guar-
antees, a minimum throughput should be guaranteed if the
sender does not exceed his specified traffic profile. Obviously,
parameters of the RIO algorithm determine the amount of
in-profile AS traffic that is forwarded unchanged, i.e., not
re-marked as out-of-profile or dropped. In-profile packets
are not dropped by the RIO algorithm if ¢ ave < Gmn,min
holds. One can assume that the average queue length for
in-profile packets (¢ avg) is proportional to Am /(1 — Aps).
Thus, we have ¢ avg < A/t — APS) - ¢Out,max Which con-
stitutes an upper bound for in-profile packets in the RIO
queue. Consequently, if we set the lower threshold gy min at
least to (Am/pt — APs) - Ous,max then no in-profile packets
are dropped. Now we have a relation between the mini-
mum threshold gy min and Ar, which defines the minimum
guaranteed throughput for Assured Service. This formula
was also empirically verified. Sender B generated 9.7 Mbit/s
best-effort traffic and sender A varied rates of Premium Ser-
vice and Assured Service traffic as shown in fig. g. It shows
calculated (light gray) and measured values (dark gray) of

qIn,avg-

Queue Length [Bytes]

43

AS. "2,
[Mbit/'s] ~ 0 3

Figure 9 Validation of queue length estimation for Assured
Service

Although Assured Service gives no guarantees related to
delay, we want to have a closer look on it. Two main in-
fluences can be distinguished: the current queue length of
the RIO queue (which is ¢ous,max int the worst case) and cur-
rent portion of PS traffic (see fig. [[0). Thus, average delay
of an AS packet in a fully loaded router can be estimated
by qout,max/ (1t — Aps). Consequently, this justifies again re-
stricting the share of PS traffic to a small portion of overall
link bandwidth.

Because queue length also varies with best-effort traffic,
jitter of Assured Service traffic cannot be determined in ad-
vance. Furthermore, AS traffic tends to become more bursty
because of the RIO queue, which leads to higher drop prob-
ability in subsequent routers. Consequently, it is recom-
mended to also shape AS traffic at boundary routers.

Delay [us]
100000

90000 -

80000 -
70000 +
60000 -

50000
40000 4~~~ - - oo
30000 -~ -~ - - -
20000 -
10000

0

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Packets

‘—4MbpsPS ——3Mbps PS ——2 Mbps PS ——1 Mbps PS 7n0PS‘

Figure 10 Delay of Assured Service packets in dependence
on Premium Service traffic

4.2.2 Evaluation of Premium Service

Premium Service should offer a low loss, low latency, low
jitter and assured bandwidth end-to-end behavior [TaNPYY].
We executed some tests in order to validate those character-
istics.

According to loss, we did not observe any packet loss if
the sender generated traffic conforming to its profile. It is
crucial that admission control is applied for Premium Ser-
vice traffic in order to guarantee low loss, low latency and
assured-bandwidth. Additionally, policing at boundaries of
the DS domain is required to prevent any excess of the negoti-
ated rate. Thus, non-conforming traffic can only evolve from
packet clumping caused by aggregation of (possibly already
aggregated) traffic flows in interior routers. Consequently,
one must have a closer look at evolution of jitter in interior
routers.

Delay [ps]
1000
900 {
800
700
600
500 i
400
300
200
* WAL AL
0 10 20 30 40 50 60 70 80 90
B Input queue delay (backlog) @ IP Processing Packets
0O DS mechanisms O Queueing Delay (Premium Queue)

Figure 11 Delay of PS packets in an interior router

Delay of Premium Service packets in interior routers is
mainly determined by waiting for an already started trans-
mission of a frame to end (cf. fig. [T). Thus, even in interior
routers where no traffic shaping is applied we often get a
rate-jitter of one packetizing time (852.8 us for an Ethernet
frame carrying a UDP payload of 1000 bytes and consider-

ing interframe gap). On the one hand, this jitter can be
multiplied by n if some packets are arriving simultaneously
at n interfaces being forwarded to the same output link. On
the other hand, this situation is very unlikely in reality, be-
cause Premium Service packets consume only a small portion
of overall bandwidth, and, in addition this jitter can be re-
duced if the speed of the physical output link is increased. In
our tests we did not observe any significant change of traffic
characteristics caused by interior routers. Furthermore, we
observed from some delay measurements that delay caused
by the backlog queue is 30 us at most (the queue is served
with a rate of approximately 1/30 us). Protocol processing
time for the IP protocol stack with Differentiated Services
enhancements is below 10 us. Naturally, both values depend
mainly on CPU power of the router.
\

Interpacket time [ps]

16000 16000
14000 14000 l

Interpacket time [us]

6000
4000
2000

6000
H 4000

18000 18000
AU A i

12000 12000

10000 10000

8000 8000

‘
= J MR A
0
0 10 20 30 40 50 60 70 80 90

Dtime between consecutive packets | Packets
of flow 2 after leaving the router

0 10 20 30 40 50 60 70 80 90
Packets

Etime between consecutive packets of
flow1 after leaving the router

(a) Flow 1, 1.5 Mbit/s (b) Flow 2, 0.5 Mbit/s

Figure 12 Rate-Jitter after aggregation and shaping of sin-
gle flows in a border router

Border routers will often shape outgoing PS traffic after
aggregation to the configured aggregated rate for a partic-
ular outgoing link in order to forward a conforming stream
to the next upstream DS domain. Because many different
incoming PS traffic streams have to be multiplexed into one
stream at a fixed rate, a border router is a serious source
for rate-jitter that is mainly experienced by microflows. The
behavior aggregate will not show any serious amount of rate-
jitter, because it is shaped. But rate-jitter of microflows (or
incoming aggregated traffic streams) within this aggregate
is increased. It is caused by the fact that most packets of
individual streams must be delayed in order to fit into the
periodical traffic pattern of the shaped traffic aggregate. In
consequence, packets of a single stream have to be delayed
more or less, resulting in jitter.

We observed this effect also by measurements. In figure [2
the interpacket times of two individual flows within an ag-
gregate after passing a border router are presented. Sender
A and Sender B each generated one Assured Service traffic
stream at 1Mbit/s and 5Mbit/s best-effort traffic. In ad-
dition, sender A sent a Premium Service flow at 0.5 Mbit/s
and sender B one flow of 1.5 Mbit/s Premium Service. In
figure one can clearly identify the jitter that is caused
by traffic shaping of the aggregate.

In previous tests UDP was used to examine effects of differ-
ent forwarding behaviors on characteristics of single packets,
while excluding hidden side-effects and interactions between
functions of another transport protocol and our implemen-
tation of DS mechanisms. After validation of our implemen-
tation, we finally accomplished some tests using TCP. As
mentionted before, because we had only 10Base2 technology
available, acknowledgements of TCP would cause collisions
on the segments. For that reason, we used an extra 10Base2
segment for transmission of TCP acknowledgements and all
10Base2 segments were used unidirectional only. Moreover,
we also used the socket option TCP_NODELAY to disable the
latency of the Nagle algorithm, and, we also removed the
checksum calculation to allow the aforementionted insertion
of timestamps by the router.

Although these constraints are not representative for most
TCP connections in the ‘real world’, we wanted to get first
impressions how most standard network-based application
software could profit from Differentiated Services.

The duration of each test for behavior with TCP was in-
creased to 100s. In all tests sender A transmitted 1 Mbit/s
Premium Service to C. There was no additional load neces-
sary, because it would not influence the measurements. We
also varied the round trip time (RTT) by using our traffic
shaper for generation of an artificial delay. Results are plot-
ted in figures [[4 and [[3 which show packet transmission time
in dependence on packet number. As one would expect from
theoretical considerations, TCP’s mechanisms for congestion
and flow control prevent it from performing well with some
Differentiated Services.

Packet transmission time [ms]
5000

MW"“"‘“
4500
4000
3500
3000
2500 e00000000000006009009%
00000066000000004600000
2000 2000000 .
1500 200000¢ 0000000000000000000¢
coveseotosoeses
1000 oo assceseese
R
500 :::: aae’
0 -fulooooost

100 110 120 130 140
Packets

0 10 20 30 40 50 60 70 80 90

1 Mbps Premium Service (TCP)
x RTT=500ms + RTT=250ms
+ RTT=100ms x RTT=10ms

1 Mbps Premium Service (UDP)
(independent of round trip time (RTT))

Figure 13 TCP behavior using Premium Service with
bucket size 20000

One reason is the slow start algorithm. It prevents short-
lived TCP connections (which are most HTTP connections)
from exploiting the available bandwidth that was supplied by
the Premium Service. As illustrated by figure [3 the shorter
the round trip time (e.g., 10 ms), the better the performance
of TCP. The optimal throughput was achieved at 10 ms RTT
which is identical to shaped UDP traffic. If the round trip
time increases, performance decreases.

Furthermore, if the size of the leaky bucket is big enough
to hold a complete content of the sending window, no packets
are discarded. What happens otherwise is shown in fig. [4: If
a packet is lost TCP assumes that congestion occured some-
where in the network and reduces its sending window drasti-
cally to resolve the network contention and increases slowly
the window again.

Packet Delay [ms]
10000

J—
9000 oocoen
J—
8000 - e
7000 - sanson
f—
6000
5000 -
Jo—
- rosoomsn
4000 | e
* e
3000 —— asaasans
sonsasoan san —_—
2000 - sonsana e P
"
oooaon 200000000000 4 AAMBALL
ROV,
1000 | scovamnned -
MWMMMW
0 ebbtosscor : : ;
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Packets

1 Mbps Premium Service (TCP)
s RTT=500ms x RTT=250ms
+ RTT=100ms ° RTT=10ms

1 Mbps Premium Service (UDP)
(independent of round trip time
(RTT))

Figure 14 TCP behavior using Premium Service with
bucket size 10000

There can be thought of some solutions to solve the ob-
served problems with TCP. First of all, slow start is no longer
needed for Premium Service connections, because packets
cannot be congested on their way to the receiver. Another
possibility is to let TCP begin with a higher sending rate at
the very first time. Rate control or traffic shaping enhance-
ments are also easy to implement into the current TCP pro-
tocol stack, but they will require a new interface option to
propagate the value for the target rate from an application
to the transport protocol.

5 Conclusions and further work

The implemented forwarding behaviors worked as expected.
Premium Service can give a hard guarantee for throughput,
but only if admission control, policing and shaping are ap-
plied consequently. Shaping of aggregated traffic increases
rate-jitter of microflows contained in this aggregate. If the re-
ceiving end-system or application is unable to compensate for
this jitter, the last-hop router could shape the traffic again.
Quality of Assured Service traffic can be improved by also
applying traffic shaping to it, because otherwise bursts are
aggregated and lead to much higher drop probabilities of
packets on their way downstream. Delay of Assured Service
depends much on the current amount of Premium Service.
Currently, a management architecture of Differentiated
Services is lacking. Most work is concentrated on forward-
ing behavior. Only if end-users could easily order and use

10

services on demand, Differentiated Services will be accepted
by them. Moreover, DS is mainly sender-based. Support of
required admission control, accounting, receiver initiated ser-
vices, multicast and even mobility could be accomplished by
using a service management architecture. In further research
we focus on this topic.

Additional development of our implementation is planned
in order to integrate and investigate new services or forward-
ing behaviors. Currently, a new testbed with a Fast-Ethernet
(100 Mbit/s) DS capable infrastructure is build. New and
more comfortable programs for performing tests are going to
be developed. We also plan to release the current implemen-
tation to the public for research purposes [KTDSYY].

Nearly all executed measurements used a fixed packet size
to identify the presented effects uniquely. As mentioned be-
fore, experiences with ‘real’” applications are missing. Thus,
a next series of tests is planned to measure performance and
quality gain for standard applications (e.g., telnet, ftp, vic,
vat, etc.) using Differentiated Services. Especially, behavior
of interactive applications will be examined.

References

[BBBN98] F. Baker, D. Black, S. Blake and K. Nichols.
Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers. RFC

2474, December 1998.

[BBCD'98] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang and W. Weiss. An Architecture for
Differentiated Services. RFC 2475, December

1998.

F. Baker, J. Heinanen, W. Weiss and J. Wro-
clawski. Assured Forwarding PHB Group.
Internet draft draft-ietf-diffserv-af-06.txt,
February 1999.

[BHWW99]

[FeHu98] P. Ferguson and G. Huston. Quality of Service.

Wiley, 1998.

[F1Ja93] S. Floyd and V. Jacobson. Random Early
Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking,

1(4):397-413, August 1993.

[JaNP99] V. Jacobson, K. Nichols and K. Poduri. An
Expedited Forwarding PHB. Internet draft —

draft-ietf-diffserv-phb-ef-02.txt, February 1999.

[JaNZ97] V. Jacobson, K. Nichols and L. Zhang. A Two-
bit Differentiated Services Architecture for the
Internet. Internet draft — draft-nichols-diff-sve-

arch-00.txt, November 1997.

[KIDS99] Karlsruhe Implementation of Differenti-
ated Services (KIDS) homepage. http://
www.telematik.informatik.uni-karlsruhe.de/

forschung /diffserv/KIDS/, April 1999.

http://www.telematik.informatik.uni-karlsruhe.de/forschung/diffserv/KIDS/
http://www.telematik.informatik.uni-karlsruhe.de/forschung/diffserv/KIDS/
http://www.telematik.informatik.uni-karlsruhe.de/forschung/diffserv/KIDS/

	Introduction
	Differentiated Services
	Implementation under Linux
	Network implementation
	Differentiated Services Classifier Module
	Differentiated Services Queueing Discipline Module
	Assured Service Implementation
	Premium Service Implementation

	Evaluation
	Test configuration
	Tests and Results
	Evaluation of Assured Service
	Evaluation of Premium Service

	Conclusions and further work

